Ⅱ. 사회조사와 데이터분석 시나리오

반응형

Ⅱ. 사회조사와 데이터분석 시나리오

 

우리는 실천 현장에서, 학계에서 논문을 쓰기 위해 등의 이유로 통계를 사용하게 된다. 이런 상황을 가정하여 그것이 어떻게 진행이 될지를 한번 상상해 보자. 아마도 다음과 같은 순서를 떠올릴 수 있을 것이다.

일반적 진행 순서

예를 들어서 살펴보자. 
연구자는 ‘부모의 양육태도’가 ‘청소년의 가출’에 유의미한 영향을 미칠 것이라고 생각한다(연구할 주제). 그래서 ‘부모의 양육태도와 청소년의 가출은 상관관계가 있다.’는 가설을 세웠다.
이제 해야할 일은 부모의 양육태도와 관련하여 다른 학자들은 어떻게 정의했는가? 공통된 입장은 무엇인가? 다른 의견은 없는가? 기존에 부모의 양육태도는 어떤 하위 개념들로 구성되어 있는가? 등을 확인해보는 일이다(이론적 배경 검토). 예를 들어 부모의 양육태도를 Baumrind는 허용적/방임적, 민주적/독재적이라는 4가지 양육태도로 구분하고 있다. 
그리고 이를 측정이 가능한 개념으로 변환(변수 정의)해야하는데, 앞선 이론적 배경을 바탕으로 기존에는 어떻게 측정하였는지, 그리고 나는 어떻게 생각하는지, 그리고 그 생각은 타당한지를 검토해야한다. 즉 양육태도가 허용적인지 방임적인지는 어떤 질문을 통해 알 수 있는 것일까? 그것이 변수가 될 것이다. 하지만 걱정할 필요는 없다. 이미 많은 연구자들이 개념과 측정방법을 정립해 두었고, 우리는 이를 차용하면 된다.
이러한 생각을 담아 설문지를 구성하고, 실제 조사를 실시한 다음, 얻어진 결과들을 컴퓨터 프로그램이 받아들일 수 있는 방식으로 변환(코딩)한다.
하지만 설문응답이 늘 성실한 것은 아니다. 5점 척도 설문에 모두 3번으로만 체크했다든지, 대부분의 질문에 응답을 하지 않았다든지 한다면, 이것이 신뢰할 수 있는 데이터인지를 연구자는 판단해야한다(이상값 처리). 우리는 이상값이라는 것을 어떻게 판단할 수 있을까? 이에 대해서는 중급통계 이상에서 다루게 된다.
 또한 사람이 하는지라 설문지는 맞게 수렴되었는데, 코딩해서 입력하는 과정에서 실수가 있을 수도 있을 것이다. 
이마저 끝이 났다면, 이제 통계 프로그램을 활용해 데이터를 분석하고, 나온 결과값이 어떤 의미인지 해석해서 보고서로 정리하게 될 것이다.

만일 당신이 사회조사를 통해 연구를 진행하고자 한다면, 위 일련의 과정에서 필요한 개념들을 하나하나 익혀갈 필요가 있다. 그리고 많은 교재들은 위 순서대로 목차가 구성되어 있다. 물론 우리는 조금 다른 방식으로 이야기를 풀어가고자 한다.

반응형