표본오차(sampling error)

반응형

일반적으로 우리는 모집단이 아닌 표본집단을 대상으로 분석을 실시한다. 하지만 이런 표본집단과 모집단 사이에는 작은 차이가 존재할 수밖에 없다. 이런 차이를 표본오차(sampling error)라 부른다.
예를들어 지난 20대 대통령선거 지상파 3사의 출구조사 결과를 살펴보자.

신뢰수준과 표본오차

이를 하나하나 해석해보면 다음과 같다.
첫째, 신뢰수준 95%는 같은 조사를 100번 했을 때 95번은 같은 결과가 나올 것이라 기대할 수 있다는 뜻이다.
둘째, 표본오차 ±0.8%p는 윤석열 후보의 실제 득표율이 47.6%~49.2%, 이재명 후보의 득표율은 47.0%~48.6% 사이에서 결정될 것으로 기대된다는 의미이다. 
그리고 이 말은 출구조사의 결과만 놓고 살펴본다면, 누가 최종적으로 대통령이 될 지에 대한 예측은 되지만 결과값이 오차범위 내에 있다는 뜻이다.

한편 이런 표본오차(e)는 표본의 크기와 관련이 있다.

표본오차

그리고 이런 표본오차는 오차한계(margin of error), 최대허용오차, 오차범위, 표집오차 등과 같은 의미로 사용된다.

표본오차 = 오차한계(margin of error) = 최대허용오차 = 오차범위 = 표집오차

반응형